Ask Question
19 April, 04:34

0,245 kg of gas with a density of 1,2 kg/m is compressed adiabatically from a pressure of 150 kPa to a pressure of 800 kPa. R = 0,293 kJ/kg. K and Cp = 1,005 kJ/kg. K. Calculate the following: 2.1 The adiabatic index 2.2 The original volume and temperature 2.3 The final absolute temperature 2.4 The work done in kJ/kg 2.5 The change in internal energy

+1
Answers (1)
  1. 19 April, 05:14
    0
    a) ∝ = 2.43

    b) V = 0.2042 m³; T = 426.69 K

    c) T final = 695 K

    d) W = 340.88 KJ/Kg

    e) ΔU = 191.04 KJ/Kg

    Explanation:

    b) PV = nRT

    Volume of gas = 0.245 g * (m³ / 1,2 Kg) = 0.2042 m³ (204.16 L)

    Temperature:

    ∴ T = PV / nR = ((150 KJ / m³) * (0.2042 m³)) / ((0.245 Kg) * (0.293 KJ/Kg. K))

    ⇒ T = 426.69 K

    a) adiabatic index (∝):

    ∝ = Cv / Cp

    ∴ Cv = Cp - nR ... ideal gas ... n = 1

    ⇒ Cv = 1.005 KJ/Kg. K - 0.293 KJ/Kg. K

    ⇒ Cv = 0.712 KJ/Kg. K

    ⇒ ∝ = 0.712 / 0.293 = 2.43

    c) final temperature (T2):

    ∴ (T2/T1) ∧ ((R+Cv) / R) = (P2/P1) ... ideal gas compressed

    ⇒ (R + Cv) / R = (0.293 + 0.712) / (0.293) = 3.43

    ⇒ (T2 / T1) ∧ (3.43) = (P2/P1) = 800 / 150 = 5.33

    ⇒ (T2 / T1) = (5.33) ∧ (1 / 3.43) =

    ⇒ T2 = 1.628 * 426.69 K

    ⇒ T2 = 695 K

    d) W = - nRTLn (P1/P2) ... n=1

    ⇒ W = - (0.293 KJ/Kg. K) * (695 K) * Ln (150/800)

    ⇒ W = 340.88 KJ/Kg

    e) ΔU = Cv ΔT ... constant volume

    ⇒ ΔU = (0.712 KJ/Kg. K) * (695 - 426.69) K

    ⇒ ΔU = 0.712 * 268.31 = 191.04 KJ/Kg
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “0,245 kg of gas with a density of 1,2 kg/m is compressed adiabatically from a pressure of 150 kPa to a pressure of 800 kPa. R = 0,293 ...” in 📘 Chemistry if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers