Ask Question
29 June, 06:54

One mole of a monatomic ideal gas is subjected to the following sequence of steps: a. Starting at 300 K and 10 atm, the gas expands freely into a vacuum to triple its volume. b. The gas is next heated reversibly to 400 K at constant volume. c. The gas is reversibly expanded at constant temperature until its volume is again tripled. d. The gas is finally reversibly cooled to 300 K at constant pressure. Calculate the values of q and w and the changes in U, H, and S.

+2
Answers (1)
  1. 29 June, 07:13
    0
    a) Q = 0; W = 0; ΔU = 0; ΔH = 0; ΔS = 0.09 atm. L/K

    b) Q = 1250 J; W = 0; ΔU = 1250 J; ΔH = 1250 J; ΔS = - 0.0235 atm. L/K

    c) Q = 3653.545 J; W = - 3653.545 J; ΔU = 0; ΔH = 0; ΔS = - 3653.545 J

    d) Q = - 2080 J; W = 830 J; ΔU = - 1250 J; ΔH = - 2080 J; ΔS = - 5.984 J/K

    Explanation:

    a) If there is a vacuum, the work is zero, as it is a free expansion, the volume increases, the pressure decreases, the temperature is constant and the internal energy is constant.

    ∴ n = 1 mole

    ∴ PV = RTn ... ideal gas

    ∴ P1 = 10 atm

    ∴ R = 0.082 atm. L/K. mol

    ∴ T = 300 K = T2

    ∴ V2 = 3*V1

    ⇒ W = 0 ... expands freely into vacuum

    ⇒ ΔU = Q = 0 ... first law

    ⇒ ΔS = - nR Ln (P2/P1) ... ideal gas

    ∴ V1*P1/T1 = V2*P2/T2

    ∴ T1 = T2 = 300 K

    ⇒ P2 = V1*P1 / V2 = V1*P1 / 3V1 = 10 atm/3 = 3.33 atm

    ⇒ ΔS = - (1mol) * (0.082 atm. L/K. mol) Ln (3.33/10)

    ⇒ ΔS = 0.09 atm. L/K

    ∴ ΔH = ΔU + (P2V2 - P1V1) = 0 + 0 = 0

    b) heated reversibly at constant volume:

    ⇒ W = 0 ... at constant volume

    ∴ T2 = 400 K; T1 = 300 K

    ∴ V1 = V2

    ⇒ Q = ΔU = CvΔT ... first law

    ∴ Cv = 12.5 J/K. mol ... monoatomic ideal gas

    ∴ ΔT = 400 - 300 = 100 K

    ⇒ Q = ΔU = 12.5 J/mol. K * 100K = 1250 J/mol * 1 mol = 1250 J

    ∴ ΔH = ΔU + PΔV = ΔU + 0 = 1250 J

    ∴ ΔS = - nR Ln (P2/P1)

    ∴ P2/T2 = P1/T1 ... constant volume

    ∴ P1 = 3.33 atm

    ⇒ P2 = P1*T2 / T1 = (3.33 atm) * (400K) / (300K) = 4.44 atm

    ⇒ ΔS = - (1mol) * (0.082atm. L/K. mol) Ln (4.44/3.33)

    ⇒ ΔS = - 0.0235 atm. L/K

    c) reversibly expanded at constant temperature:

    ∴ T1 = T2 = 400K

    ∴ V2 = 3*V1

    ∴ ΔU = 0 ... constant temperature

    ⇒ Q = - W ... fisrt law

    ∴ W = - ∫ PdV ... reversibly expansion

    ∴ P = nRT/V ... ideal gas

    ⇒ W = - nRT ∫ dV/V

    ⇒ W = - nRT Ln (V2/V1)

    ⇒ W = - (1mol) * (8.314 J/K. mol) Ln (3)

    ⇒ W = - 9.134 J/K * 400K = - 3653.545 J

    ⇒ Q = - W = 3653.545 J

    ⇒ ΔH = ΔU + P1V1 - P2V2 = 0 + nRT1 - nRT2 = 0 + 0 = 0

    ∴ ΔS = - nR Ln (P2/P1)

    ∴ P1 = 4.44 atm

    ⇒ P2 = V1*P1*T2 / V2*T1 = V1 * (4.44atm) * (400K) / (3. V1) * (400K)

    ⇒ P2 = 4.44atm/3 = 1.48 atm

    ⇒ ΔS = - (1mol) * (8.314 J/mol. K) Ln (1.48/4.44)

    ⇒ ΔS = - 9.134J/K * 400K = - 3653.545 J

    d) reversibly cooled at constant pressure:

    ∴ T2 = 300 K; T1 = 400 K

    ∴ P2 = P1

    ⇒ Q = ΔH = CpΔT

    ∴ Cp = 20.8 J/K. mol

    ∴ ΔT = 300 - 400 = - 100 K

    ⇒ Q = ΔH = 20.8 J/mol. K * (-100K) = - 2080 J/mol * 1mol = - 2080 J

    ⇒ ΔU = nCvΔT = (1mol) * (12.5 J/mol. K) * ( - 100K) = - 1250 J

    ⇒ W = ΔU - Q = ΔU - ΔH = - 1250 J - ( - 2080 J) = 830 J

    ∴ ΔS = ∫ δQ/T = ∫ nCpdT/T

    ⇒ ΔS = nCp Ln (T2/T1)

    ⇒ ΔS = (1mol) * (20.8 J/mol. K) Ln (300/400) = - 5.984 J/K
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “One mole of a monatomic ideal gas is subjected to the following sequence of steps: a. Starting at 300 K and 10 atm, the gas expands freely ...” in 📘 Chemistry if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers