Ask Question
19 March, 18:06

Let the random variable Z follow a standard normal distribution. a. Find P1Z 6 1.202. b. Find P1Z 7 1.332. c. Find P1Z 7-1.702. d. Find P1Z 7-1.002. e. Find P11.20 6 Z 6 1.332. f. Find P1-1.70 6 Z 6 1.202. g. Find P1-1.70 6 Z 6-1.002.

+5
Answers (1)
  1. 19 March, 20:29
    0
    The data in the question seems a bit erroneous so I am writing the complete question below:

    Let the random variable Z follow a standard normal distribution.

    a. Find P (Z < 1.20).

    b. Find P (Z > 1.33).

    c. Find P (Z > - 1.70).

    d. Find P (Z > - 1.00).

    e. Find P (1.20 < Z < 1.33).

    f. Find P (-1.70 < Z < 1.20).

    g. Find P (-1.70 < Z < - 1.00).

    Answer:

    (a) P (Z < 1.20) = 0.8849

    (b) P (Z > 1.33) = 0.0918

    (c) P (Z > - 1.70) = 0.9554

    (d) P (Z > - 1.00) = 0.8413

    (e) P (1.20 < Z < 1.33) = 0.0233

    (f) P (-1.70 < Z < 1.20) = 0.8403

    (g) P (-1.70 < Z < - 1.00) = 0.1141

    Explanation:

    To answer this question, we would need to use the Normal Distribution Probability table. The table shows areas under the normal curve to the left of the z value i. e. it shows P (Z
    (a) We need to compute P (Z < 1.20). For this, we will look for the area under the normal curve at z=1.20 in the Normal Distribution Probability Table. So,

    P (Z < 1.20) = 0.8849

    (b) Now we need to compute P (Z > 1.33). For this, we will find the value of P (Z 1.33).

    P (Z > 1.33) = 1 - P (Z < 1.33)

    = 1 - 0.9082

    P (Z > 1.33) = 0.0918

    (c) Similar to part (b), we will find the value of P (Z - 1.70).

    P (Z > - 1.70) = 1 - P (Z < - 1.70)

    = 1 - 0.0446

    P (Z > - 1.70) = 0.9554

    (d) P (Z > - 1.00) = 1 - P (Z < - 1.00)

    = 1 - 0.1587

    P (Z > - 1.00) = 0.8413

    (e) To compute P (1.20 < Z < 1.33), we will first find the value of P (Z<1.20) and subtract it from the value of P (Z<1.33) using the normal distribution table.

    P (1.20 < Z < 1.33) = P (Z < 1.33) - P (Z < 1.20)

    = 0.9082 - 0.8849

    P (1.20 < Z < 1.33) = 0.0233

    (f) P (-1.70 < Z < 1.20) = P (Z < 1.20) - P (Z < - 1.70)

    = 0.8849 - 0.0446

    P (-1.70 < Z < 1.20) = 0.8403

    (g) P (-1.70 < Z < - 1.00) = P (Z < - 1.00) - P (Z < - 1.70)

    = 0.1587 - 0.0446

    P (-1.70 < Z < - 1.00) = 0.1141
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Let the random variable Z follow a standard normal distribution. a. Find P1Z 6 1.202. b. Find P1Z 7 1.332. c. Find P1Z 7-1.702. d. Find P1Z ...” in 📘 Computers and Technology if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers