Ask Question
6 November, 22:37

Simplify the following Boolean expressions to a minimum number of literals

a. xy+xy'

b. (x+y) (x+y')

c. (a+b+c') (a'b'+c)

d. a'bc+abc'+abc+a'bc'

e. (x+y) ' (x'+y') f. xy+x (wz+wz')

+1
Answers (1)
  1. 7 November, 00:54
    0
    a. xy+xy' = x

    b. (x+y) (x+y') = x

    c. (a+b+c') (a'b'+c) = c (a + b) + a'b'c'

    d. a'bc+abc'+abc+a'bc' = b

    e. (x+y) ' (x'+y') = x'y'

    f. xy+x (wz+wz') = x (y+w)

    Explanation:

    a) xy+xy'

    = x (y + y′) / / taking x common

    = x. 1 / / y + y' = 1

    = x

    b) (x+y) (x+y')

    = xx + xy′ + yx + yy′ / /multiplying x+y with x+y'

    = x + xy′ + xy + 0 / / xx = 1 yy' = 0

    = x (1 + y′ + y) / / taking x common

    = x. 1 / / y+y' = 1

    = x

    c) (a+b+c') (a'b'+c)

    = aa'b' + ac + a'b'b + bc + a'b'c' + cc'

    = 0 + ac + 0 + bc + a'b'c' + 0 / / aa' = 0 bb'=0 cc' = 0

    = ac + bc + a'b'c'

    = c (a + b) + a'b'c'

    d) a'bc + abc' + abc + a'bc'

    = b (a'c + ac' + ac + a'c') / /taking b common

    = b (a'c + a'c' + ac' + ac)

    = b (a' (c+c') + a (c+c') / / taking a common

    = b (a' (1) + a (1)) / /c+c' = 1

    = b (a'+a) / /a+a'=1

    = b (1)

    = b

    e) (x+y) ' (x'+y')

    = ((x+y) ' (x'+y'))

    = ((x+y) + (x'+y') ') '

    = (x + y + (x''y'')) '

    = (x + y + (xy)) '

    = (x + y + xy) '

    = (x (1 + y) + y) '

    = (x + y) '

    = x'y'

    OR it can be done as:

    e) (x+y) ' (x'+y')

    = x′y′ (x′+y′) / / (x+y) ' = x'y'

    = x′y′ + x′y′ / / (xy) ' = x'+y'

    = x′y′

    f. xy+x (wz+wz')

    = xy + xw (z+z′) / /taking w common

    = xy + xw / / z+z'=1

    = x (y+w)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Simplify the following Boolean expressions to a minimum number of literals a. xy+xy' b. (x+y) (x+y') c. (a+b+c') (a'b'+c) d. ...” in 📘 Computers and Technology if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers