Ask Question
20 January, 04:54

This question is from " Networks, Crowds, and Markets: Reasoning about a Highly Connected World" textbook in chapter 6 Say whether the following claim is true or false, and provide a brief (1-3 sentence) explanation for your answer. Claim: If player A in a two-person game has a dominant strategy sA, then there is a pure strategy Nash equilibrium in which player A plays sA and player B plays a best response to sA.

+5
Answers (1)
  1. 20 January, 05:42
    0
    If either player had a strictly dominant strategy, then she would have to play that strategy in both Nash equilibria in pure strategies; you can't play a strictly dominated strategy in a Nash equilibrium. So if player i has a strictly dominant strategy, then she must play it in both Nash equilibria. But since the other player, j, isn't indifferent between any two outcomes, j cannot be indifferent between the two Nash equilibria in pure strategies. Since j strictly prefers one Nash equilibrium to the other, and since i plays the same strategy in both NE, j would deviate from the NE that she likes less to the one she likes more. Thus the NE that j likes less cannot be a NE, and we've reached a contradiction. We conclude that neither player can have a strictly dominant strategy.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “This question is from " Networks, Crowds, and Markets: Reasoning about a Highly Connected World" textbook in chapter 6 Say whether the ...” in 📘 Computers and Technology if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers