Ask Question
25 January, 12:55

Which statements are true for solving the equation 0.5 - |x - 12| = - 0.25? Check all that apply.

The equation will have no solutions.

A good first step for solving the equation is to subtract 0.5 from both sides of the equation.

A good first step for solving the equation is to split it into a positive case and a negative case.

The positive case of this equation is 0.5 - |x - 12| = 0.25.

The negative case of this equation is x - 12 = - 0.75.

The equation will have only 1 solution

+3
Answers (1)
  1. 25 January, 15:30
    0
    So

    for |a|=b, solve for a=b and a=-b

    remember,

    |n|≥0 for all real numbers n

    first, minus 0.5 both sides then times - 1 to get

    |x-12|=0.75

    the positive case is x-12=0.75

    negative case is x-12=-0.75

    2 solutions

    so answers are

    first one

    second

    4th

    A good first step for solving the equation is to subtract 0.5 from both sides of the equation.

    A good first step for solving the equation is to split it into a positive case and a negative case.

    The negative case of this equation is x - 12 = - 0.75.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Which statements are true for solving the equation 0.5 - |x - 12| = - 0.25? Check all that apply. The equation will have no solutions. A ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers