Ask Question
19 November, 19:32

Compute how many 7-digit numbers can be made from the digits 1,2,3,4,5,6,7 if there is no repetition and the odd digits must appear in an unbroken sequence

+2
Answers (1)
  1. 19 November, 20:23
    0
    There are four odd digits, and the odd digits sequence begin on the 1st empty spot, 2nd, 3r or 4rth.

    So basically we have four choices, where the first digit is odd.

    We get

    Four ways (4!) to arrange odd digits.

    Three ways (3!) to arrange even digits.

    Total arrangements = 4 x 4! x 3!

    Simplify

    Total arrangements = 4 x 4 x 3 x 2 x 1 x 3 x 2 x 1

    Total arrangements = 576

    Answer: 576
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Compute how many 7-digit numbers can be made from the digits 1,2,3,4,5,6,7 if there is no repetition and the odd digits must appear in an ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers