Ask Question
7 March, 22:43

Match the circle equations in general form with their corresponding equations in standard form. x2 + y2 - 4x + 12y - 20 = 0 (x - 6) 2 + (y - 4) 2 = 56 x2 + y2 + 6x - 8y - 10 = 0 (x - 2) 2 + (y + 6) 2 = 60 3x2 + 3y2 + 12x + 18y - 15 = 0 (x + 2) 2 + (y + 3) 2 = 18 5x2 + 5y2 - 10x + 20y - 30 = 0 (x + 1) 2 + (y - 6) 2 = 46 2x2 + 2y2 - 24x - 16y - 8 = 0 x2 + y2 + 2x - 12y - 9 = 0

+2
Answers (1)
  1. 7 March, 23:39
    0
    The equation form of a circle is (x - a) ² + (y - b) ² = r²

    Equation 1:

    x² - 4x + y² + 12y - 20 = 0 ⇒ use the completing the square method for x² - 4x and y² + 12y

    x² - 4x = (x - 2) ² - 4

    y² + 12y = (y + 6) ² - 36

    Put them back together, we have

    (x - 2) ² - 4 + (y + 6) ² - 36 - 20 = 0

    (x - 2) ² + (y + 6) ² - 4 - 36 - 20 = 0

    (x - 2) ² + (y + 6) ² - 60 = 0

    (x - 2) ² + (y + 6) ² = 60

    Equation 2:

    x² + y² + 6x - 8y - 10 = 0

    (x² + 6x) + (y² - 8y) - 10 = 0

    (x + 3) ² - 9 + (y - 4) ² - 16 - 10 = 0

    (x + 3) ² + (y - 4) ² - 9 - 16 - 10 = 0

    (x + 3) ² + (y - 4) ² - 35 = 0

    (x + 3) ² + (y - 4) ² = 35

    Equation 3:

    3x² + 12x + 3y² + 18y - 15 = 0

    3 [x² + 4x + y² + 6y - 5] = 0

    x² + 4x + y² + 6y - 5 = 0

    (x² + 4x) + (y² + 6y) - 5 = 0

    (x + 2) ² - 4 + (y + 3) ² - 9 - 5 = 0

    (x + 2) ² + (y + 3) ² - 4 - 9 - 5 = 0

    (x + 2) ² + (y + 3) ² - 18 = 0

    (x + 2) ² + (y + 3) ² = 18

    Equation 4:

    5x² + 5y² - 10x + 20y - 30 = 0

    5 [x² + y² - 2x + 4y - 6] = 0

    x² + y² - 2x + 4y - 6 = 0

    (x² - 2x) + (y² + 4y) - 6 = 0

    (x - 1) ² - 2 + (y + 2) ² - 4 - 6 = 0

    (x - 1) ² + (y + 2) ² - 2 - 4 - 6 = 0

    (x - 1) ² + (y + 2) ² - 12 = 0

    (x - 1) ² + (y + 2) ² = 12

    Equation 5:

    2x² + 2y² - 24x - 16y - 8 = 0

    2 [x² + y² - 12x - 8y - 4] = 0

    x² + y² - 12x - 8y - 4 = 0

    (x² - 12x) + (y² - 8y) - 4 = 0

    (x - 6) ² - 36 + (y - 4) ² - 16 - 4 = 0

    (x - 6) ² + (y - 4) ² - 36 - 16 - 4 = 0

    (x - 6) ² + (y - 4) ² - 56 = 0

    (x - 6) ² + (y - 4) ² = 56

    Equation 6:

    x² + y² + 2x - 12y - 9 = 0

    (x² + 2x) + (y² - 12y) - 9 = 0

    (x + 1) ² - 1 + (y - 6) ² - 36 - 9 = 0

    (x + 1) ² + (y - 6) ² - 1 - 36 - 9 = 0

    (x + 1) ² + (y - 6) ² - 46 = 0

    (x + 1) ² + (y - 6) ² = 46
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Match the circle equations in general form with their corresponding equations in standard form. x2 + y2 - 4x + 12y - 20 = 0 (x - 6) 2 + (y ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers