Ask Question
8 October, 12:10

Find the derivative of y = sin2 (4x) cos (3x) with respect to x.

A. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x)

B. 8 sin (4x) cos (3x) - 3 sin2 (4x) sin (3x)

C. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x) cos (3x)

D. 8 cos (4x) cos (3x) - 3 sin2 (4x) sin (3x)

+4
Answers (1)
  1. 8 October, 12:39
    0
    Expanded:

    y = sin (4x) * sin (4x) * cos (3x)

    need to use the product rule and chain rule

    look at individual derivatives, use chain rule

    d/dx sin (4x) = 4cos (4x)

    d/dx cos (3x) = - 3sin (3x)

    put it together using product rule

    dy/dx = 4cos (4x) * sin (4x) * cos (3x) + 4cos (4x) * sin (4x) * cos (3x) - 3sin (3x) * sin (4x) * sin (4x)

    simplify

    dy/dx = 8cos (4x) * sin (4x) * cos (3x) - 3sin (3x) * sin2 (4x)

    answer is A.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Find the derivative of y = sin2 (4x) cos (3x) with respect to x. A. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x) B. 8 sin (4x) cos ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers