Ask Question
12 August, 17:02

Prove the identity cos (x-y) - cos (x+y) = 2sinxsiny

+5
Answers (1)
  1. 12 August, 18:08
    0
    cos (x-y) - cos (x+y) = 2sinxsiny

    Use cosine addition and subtraction identities:

    cos (x-y) = cos x cos y + sin x sin y

    cos (x+y) = cos x cos y - sin x sin y

    So

    LHS = cos (x-y) - cos (x+y)

    = cos x cos y + sin x sin y - (cos x cos y - sin x sin y)

    = cos x cos y + sin x sin y - cos x cos y + sin x sin y

    cos x cos y and - cos x cos y are additive inverses; they sum together to get 0.

    LHS = sin x sin y + sin x sin y

    = 2 sin x sin y

    = RHS
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove the identity cos (x-y) - cos (x+y) = 2sinxsiny ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers