Ask Question
17 August, 01:42

What are the exact values of the six trigonometric functions for - 7pi/6 radians?

+1
Answers (1)
  1. 17 August, 05:24
    0
    For - 7pi/6 is an angle in second quadrant, then sine and cosecant must be positive; and cosine, secant, tangent and cotangent must me negative.

    The reference angle is:

    7pi/6-pi=7pi/6-6pi/6 = (7pi-6pi) / 6=pi/6

    Then

    sin (-7pi/6) = sin (pi/6) →sin (-7pi/6) = 1/2

    cos (-7pi/6) = - cos (pi/6) →cos (-7pi/6) = - sqrt (3) / 2

    csc (-7pi/6) = 1/sin (-7pi/6) = 1 / (1/2) = 1 (2/1) = 2/1→csc (-7pi/6) = 2

    sec (-7pi/6) = 1/cos (-7pi/6) = 1 / (-sqrt (3) / 2) = - 1 (2/sqrt (3)) = - 2/sqrt (3) →

    sec (-7pi/6) = - [2/sqrt (3) ]*sqrt (3) / sqrt (3) = - 2sqrt (3) / [sqrt (3) ]^2→

    sec (-7pi/6) = - 2sqrt (3) / 3

    tan (-7pi/6) = sin (-7pi/6) / cos (-7pi/6) = (1/2) / (-sqrt (3) / 2) = - (1/2) * (2/sqrt (3)) →

    tan (-7pi/6) = - 2/[2sqrt (3) ]=-1/sqrt (3) = - [1/sqrt (3) ]*[sqrt (3) / sqrt (3) ]→

    tan (-7pi/6) = - sqrt (3) / [sqrt (3) ]^2→tan (-7pi/6) = - sqrt (3) / 3

    cot (-7pi/6) = cos (-7pi/6) / sin (-7pi/6) = [-sqrt (3) / 2] / (1/2) = - sqrt (3) / 2 * (2/1) →

    cot (-7pi/6) = - 2sqrt (3) / 2→cot (-7pi/6) = - sqrt (3)

    Answers:

    sin (-7pi/6) = 1/2

    cos (-7pi/6) = - sqrt (3) / 2

    tan (-7pi/6) = - sqrt (3) / 3

    csc (-7pi/6) = 2

    sec (-7pi/6) = - 2*sqrt (3) / 2

    cot (-7pi/6) = - sqrt (3)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “What are the exact values of the six trigonometric functions for - 7pi/6 radians? ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers