Ask Question
29 August, 19:39

Rewrite 2 cos 75 degrees sin 75 degrees a double angle identity

+3
Answers (2)
  1. 29 August, 21:27
    0
    It follows from the double angle identity for sine,

    sin (2x) = 2 sin (x) cos (x),

    that

    2 cos (75º) sin (75º) = sin (2•75º) = sin (150º)

    Alternatively, recall that

    sin (x + y) = sin (x) cos (y) + cos (x) sin (y)

    sin (x - y) = sin (x) cos (y) - cos (x) sin (y)

    Adding these together gives

    sin (x + y) + sin (x - y) = 2 sin (x) cos (y)

    Set x = y = 75º; then

    2 sin (75º) cos (75º) = sin (75º + 75º) + sin (75º - 75º)

    2 sin (75º) cos (75º) = sin (150º)
  2. 29 August, 21:57
    0
    2 cos 75°. Sin 75° = Sin 150°

    Notice:

    Sin 150 º = Sin 30°

    See that Sin 75° = Cos 15°

    Cos 75° = Sin 15°

    So:

    2Cos 75°. Sin 75° = 2 Sin 15°Cos°15 = Sin 30°
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Rewrite 2 cos 75 degrees sin 75 degrees a double angle identity ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers