Ask Question
31 May, 00:01

A company manufactures two products X and Y. Each product has to be processed in three departments: welding, assembly and painting. Each unit of X spends 2 hours in the welding department, 3 hours in assembly and 1 hour in painting. The corresponding times for a unit of Y are 3, 2 and 1 hours respectively. The employee hours available in a month are 1,500 for the welding department, 1,500 in assembly and 550 in painting. The contribution to profits are 100 USD for product X and 120 USD for product Y. What is the objective function (Z) to be maximised in this linear programming problem (where Z is total profit in USD) ? (note : means = )

+2
Answers (1)
  1. 31 May, 02:22
    0
    100x+120y = z

    z = $ 63000

    Step-by-step explanation:

    Product Welding Assembly Painting Cont. to profit

    X 2x hours 3x hours 1xhour = $100x

    Y 3y hours 2y hours 1y hour = $120y

    Total hours 1500 hours 1500 hours 550 hours

    available

    Let X represent product X

    Let Y represent Product Y

    2x + 3y = 1500

    x + y = 550

    y = 550-x

    2x + 3 (550-x) = 1500

    2x + 1650 - 3x = 1500

    150 = x

    y = 550-150

    y = 400

    Objective Function Z = 100x + 120y

    Z = 100 (150) + 120 (400)

    Z = 15000+48000

    Z = $63000
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A company manufactures two products X and Y. Each product has to be processed in three departments: welding, assembly and painting. Each ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers