Ask Question
24 August, 20:25

Parnell unvested a total of $14000 in two accounts. After a year, one account lost 7.7% while the other account gained 2.5%. In total, Parnell lost $517. Write a system of equations to find how much money Parnell invested in each account.

+2
Answers (1)
  1. 24 August, 22:02
    0
    Answer: the equations are

    x + y = 14000

    0.077x - 0.025y = 517

    Step-by-step explanation:

    Let x represent the amount invested in first account.

    Let y represent the amount invested in second account.

    Parnell invested a total of $14000 in two accounts. It means that

    x + y = 14000

    After a year, first account lost 7.7%. The amount lost in the first account is 7.7/100 * x = 0.077x.

    The amount left in the first account is

    x - 0.077x = 0.923x

    On the other account gained, he gained 2.5%.

    The amount gained in the second account is 2.5/100 * y = 0.025y

    The amount left in the first account is

    y + 0.025y = 1.025y

    Total amount in first account and second account presently is

    0.923x + 1.025y

    Total amount in first account and second account initially is

    x + y

    Amount lost is

    x + y - (0.923x + 1.025y)

    = 0.077x - 0.025y

    In total, Parnell lost $517. Therefore

    0.077x - 0.025y = 517
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Parnell unvested a total of $14000 in two accounts. After a year, one account lost 7.7% while the other account gained 2.5%. In total, ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers