Ask Question
18 October, 17:47

Prove the identity.

tan (x - y) + tan (z - x) + tan (y - z) = tan (x - y) tan (z - x) tan (y - z)

+4
Answers (1)
  1. 18 October, 18:39
    0
    Step-by-step explanation:

    This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.

    (x - y) + (z - x) + (y - z) = 0

    Subtract two terms to the other side and take the tangent:

    x - y = - ((z - x) + (y - z))

    tan (x - y) = tan ( - ((z - x) + (y - z)))

    Use reflection property:

    tan (x - y) = - tan ((z - x) + (y - z))

    Now use angle sum identity:

    tan (x - y) = - [tan (z - x) + tan (y - z) ] / [1 - tan (z - x) tan (y - z) ]

    tan (x - y) = [tan (z - x) + tan (y - z) ] / [tan (z - x) tan (y - z) - 1]

    tan (x - y) [tan (z - x) tan (y - z) - 1] = tan (z - x) + tan (y - z)

    tan (x - y) tan (z - x) tan (y - z) - tan (x - y) = tan (z - x) + tan (y - z)

    tan (x - y) tan (z - x) tan (y - z) = tan (x - y) + tan (z - x) + tan (y - z)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove the identity. tan (x - y) + tan (z - x) + tan (y - z) = tan (x - y) tan (z - x) tan (y - z) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers