Ask Question
4 June, 17:18

Prove that : cos10° - sin10° / sin10° + cos10° = tan35°

+4
Answers (1)
  1. 4 June, 17:30
    0
    Step-by-step explanation:

    (cos 10° - sin 10°) / (cos 10° + sin 10°)

    Rewrite 10° as 45° - 35°.

    (cos (45° - 35°) - sin (45° - 35°)) / (cos (45° - 35°) + sin (45° - 35°))

    Use angle difference formulas.

    (cos 45° cos 35° + sin 45° sin 35° - sin 45° cos 35° + cos 45° sin 35°) / (cos 45° cos 35° + sin 45° sin 35° + sin 45° cos 35° - cos 45° sin 35°)

    sin 45° = cos 45°, so dividing:

    (cos 35° + sin 35° - cos 35° + sin 35°) / (cos 35° + sin 35° + cos 35° - sin 35°)

    Combining like terms:

    (2 sin 35°) / (2 cos 35°)

    Dividing:

    tan 35°
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove that : cos10° - sin10° / sin10° + cos10° = tan35° ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers