Ask Question
1 January, 21:07

Use induction to prove that for all integers n 2 1 we have 1.1! + 2.2! + 3.3! + ... + nin! = (n + 1) ! - 1.

+2
Answers (1)
  1. 1 January, 22:14
    0
    Step-by-step explanation:

    Let's assume that

    P (n) = 1.1! + 2.2! + 3.3! + ... + n. n! = (n + 1) ! - 1.

    For n = 1

    L. H. S = 1.1!

    = 1

    R. H. S = (n + 1) ! - 1.

    = (1 + 1) ! - 1.

    = 1

    L. H. S = R. H. S

    Hence the P (n) is true for n=1

    Fort n = 2

    L. H. S=1.1! + 2.2!

    =1+4

    =5

    R. H. S = (2 + 1) ! - 1.

    = (2 + 1) ! - 1.

    = 5

    L. H. S = R. H. S

    Hence the P (n) is true for n=2

    Let's assume that P (n) is true for all n.

    Then we have to prove that P (n) is true for (n+1) too.

    So,

    L. H. S = 1.1! + 2.2! + 3.3! + ... + n. n! + (n+1). (n+1) !

    = (n + 1) ! - 1 + (n+1). (n+1) !

    = (n+1) ![1 + (n+1) ]-1

    = (n+1) ! (n+2) - 1

    = (n+2) !-1

    =[ (n+1) + 1]!-1

    So, P (n) is also true for (n+1).

    So, P (n) is true for all integers n.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Use induction to prove that for all integers n 2 1 we have 1.1! + 2.2! + 3.3! + ... + nin! = (n + 1) ! - 1. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers