Ask Question
22 February, 06:50

The length of a rectangular driveway is four feet less than five times the width. The area is 672 feet squared. Find the width and length of the driveway

+5
Answers (1)
  1. 22 February, 09:22
    0
    Answer: length of the drive way = 56 feet

    Width of the driveway = 12 feet

    Step-by-step explanation:

    The rectangular driveway has two equal lengths and two equal widths. The area of the driveway is expressed as

    length, l * width, w

    The area is 672 feet squared. It means that

    L*W = 672

    The length of the rectangular driveway is four feet less than five times the width. It means that

    L = 5W - 4

    Substituting L = 5W - 4 into LW = 672

    W (5W - 4) = 672

    5W^2 - 4W - 672 = 0

    5W^2 + 56W - 60W - 672 = 0

    W (5W + 56) - 12 (5W + 56) = 0

    (W - 12) (5W + 56) = 0

    W - 12 = 0 or 5W + 56 = 0

    W = 12 or 5W = - 56

    W = 12 or W = - 56/5

    The Width cannot be negative, so

    W = 12

    LW = 672

    12L = 672

    L = 672/12 = 56
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “The length of a rectangular driveway is four feet less than five times the width. The area is 672 feet squared. Find the width and length ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers