Ask Question
23 May, 01:17

A satellite in a circular orbit 1250 kilometers above the Earth makes one complete revolution every 110 minutes. Assuming that Earth is a sphere of radius 6378 kilometers,

what is the linear speed (in kilometers per minute) of the satellite?

What is the linear speed in kilometers per hour, in miles per hour?

+2
Answers (1)
  1. 23 May, 05:16
    0
    Vt = 435,49 Km/min

    Vt = 26129 Km/hour

    Vt = 16630, 35 miles/hour

    Step-by-step explanation:

    The distance from earth center up to satellite position is:

    earth radius + distance above earth

    radius of satellite 6378 + 1250 = 7628 Km

    linear speed = Vt = 2π*r/T

    where

    r is radius of satellite and T period = 110 min

    Then

    Vt = 6,28 * 7628 / 110

    Vt = 47903/110

    Vt = 435,49 Km/min

    To get it in Km/h we must multiply by 60

    Vt = 26129 Km/hour

    And finally to get it in miles per hour we divide by 1,6

    Vt = 16630, 35 miles/hour
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A satellite in a circular orbit 1250 kilometers above the Earth makes one complete revolution every 110 minutes. Assuming that Earth is a ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers