Ask Question
21 August, 02:47

Solve the following recurrence relations. a. x (n) = x (n - 1) + 5 for n > 1, x (1) = 0b. x (n) = 3x (n - 1) for n > 1, x (1) = 4c. x (n) = x (n - 1) + n for n > 0, x (0) = 0

+2
Answers (1)
  1. 21 August, 04:58
    0
    (a) x (n) = 5 (n-1)

    (b) x (n) = 4 X 3ⁿ⁻¹

    (c) x (n) = n (n+1) / 2

    Step-by-step explanation:

    (a) x (n) = x (n - 1) + 5 for n > 1, x (1) = 0

    Put n=n-1

    x (n-1) = x (n-2) + 5

    Recall: x (n-1) = x (n) - 5

    Substitute:

    x (n) - 5=x (n-2) + 5

    x (n) = x (n-2) + 5+5

    Put n=n-2

    x (n-2) = x (n-3) + 5

    Recall: x (n-2) = x (n) - 5-5

    Substitute:

    x (n) - 5-5=x (n-3) + 5

    x (n) = x (n-3) + 5+5+5

    Generalising

    x (n) = x (n-i) + 5i for i
    Put i=n-1

    x (n) = x (n - (n-1)) + 5 (n-1)

    x (n) = x (1) + 5 (n-1) = 0+5 (n-1)

    x (n) = 5 (n-1)

    (b) x (n) = 3x (n - 1) for n > 1, x (1) = 4

    Put n=n-1

    x (n-1) = 3x (n-2)

    Recall: x (n-1) = x (n) / 3

    Substitute:

    x (n) / 3=3x (n-2)

    x (n) = 3 X 3x (n-2)

    Put n=n-2

    x (n-2) = 3x (n-3)

    Recall: x (n-2) = x (n) / 3²

    Substitute:

    x (n) / 3²=3x (n-3)

    x (n) = 3³x (n-3)

    Generalising

    x (n) = 3ⁱ x (n-i) for i
    Put i=n-1

    x (n) = 3ⁿ⁻¹ x (n - (n-1))

    x (n) = 3ⁿ⁻¹ x (1)

    x (n) = 3ⁿ⁻¹*4

    x (n) = 4 X 3ⁿ⁻¹

    (c) x (n) = x (n - 1) + n for n > 0, x (0) = 0

    Put n=1

    x (1) = x (1-1) + 1

    x (1) = 0+1=1

    Put n=2

    x (2) = x (2-1) + 2

    x (2) = x (1) + 2=1+2=3

    Put n=3

    x (3) = x (3-1) + 3=x (2) + 3=3+3=6

    Generalising

    x (n) = n (n+1) / 2
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Solve the following recurrence relations. a. x (n) = x (n - 1) + 5 for n > 1, x (1) = 0b. x (n) = 3x (n - 1) for n > 1, x (1) = 4c. x (n) = ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers