Ask Question
8 February, 23:13

Use cos (2x) = cos2 (x) - sin2 (x) to establish the following formulas.

a. cos2 (x) = 1 + cos (2x) / 2

b. sin2 (x) = 1 - cos (2x) / 2

+4
Answers (1)
  1. 9 February, 03:10
    0
    a. cos2 (x) = 1 + cos (2x) / 2

    b. sin2 (x) = 1 - cos (2x) / 2

    Step-by-step explanation:

    From cos (2x) = cos2 (x) - sin2 (x)

    a. cos2 (x) = cos (2x) + sin2 (x)

    but sin2 (x) = 1 - cos2 (x)

    Therefore,

    cos2 (x) = cos (2x) + 1 - cos2 (x)

    cos2 (x) + cos2 (x) = cos (2x) + 1

    2 cos2 (x) = cos (2x) + 1

    cos2 (x) = (cos (2x) + 1) / 2

    Hence cos2 (x) = 1 + cos (2x) / 2

    b. sin2 (x) = 1 - cos (2x) / 2

    cos2 (x) = 1 - sin2 (x)

    Therefore,

    sin2 (x) = cos2 (x) - cos (2x)

    sin2 (x) = 1 - sin2 (x) - cos (2x)

    2sin2 (x) = 1 - cos (2x)

    sin2 (x) = (1 - cos (2x)) / 2

    Hence the proof.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Use cos (2x) = cos2 (x) - sin2 (x) to establish the following formulas. a. cos2 (x) = 1 + cos (2x) / 2 b. sin2 (x) = 1 - cos (2x) / 2 ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers