Ask Question
13 March, 00:34

The first derivative of x^2+2y^2=16 is - x / (2y), the second is - (2y^2+x^2) / (4y^3). Find the third implicit derivative of x^2+2y^2=16.

+2
Answers (2)
  1. 13 March, 02:03
    0
    d³y/dx³ = (-2xy² - 3x³ - 4xy²) / (8y⁵)

    Step-by-step explanation:

    d²y/dx² = (-2y² - x²) / (4y³)

    Take the derivative (use quotient rule and chain rule):

    d³y/dx³ = [ (4y³) (-4y dy/dx - 2x) - (-2y² - x²) (12y² dy/dx) ] / (4y³) ²

    d³y/dx³ = [ (-16y⁴ dy/dx - 8xy³ - (-24y⁴ dy/dx - 12x²y² dy/dx) ] / (16y⁶)

    d³y/dx³ = (-16y⁴ dy/dx - 8xy³ + 24y⁴ dy/dx + 12x²y² dy/dx) / (16y⁶)

    d³y/dx³ = ((8y⁴ + 12x²y²) dy/dx - 8xy³) / (16y⁶)

    d³y/dx³ = ((2y² + 3x²) dy/dx - 2xy) / (4y⁴)

    Substitute:

    d³y/dx³ = ((2y² + 3x²) (-x / (2y)) - 2xy) / (4y⁴)

    d³y/dx³ = ((2y² + 3x²) (-x) - 4xy²) / (8y⁵)

    d³y/dx³ = (-2xy² - 3x³ - 4xy²) / (8y⁵)
  2. 13 March, 02:51
    0
    y''' = 3 (x² + 2y²) / (4y³)

    Step-by-step explanation:

    x² + 2y² = 16

    2x + 4y (y') = 0

    4y (y') = - 2x

    2y (y') = - x

    y' = - x/2y

    2y (y') = - 1

    2[y'*y' + y*y"] = - 1

    2 (y') ² + 2y (y") = - 1

    2 (-x/2y) ² + 2y (y") = - 1

    2 (x²/4y²) + 2y (y") = - 1

    2y (y") = - 1 - 2 (x²/4y²)

    8y³ (y") = - 4y² - 2x²

    4y³ (y") = - 2y² - x²

    y" = [-x² - 2y²] : (4y³)

    y" = - (x² + 2y²) / (4y³)

    4y³ (y") = - 2y² - x²

    4y³ (y"') + 12y² (y') (y") = - 4y (y') - 2x

    4y³ (y''') + 12y³[ - (x² + 2y²) / (4y³) ] =

    -4y (-x/2y) - 2x

    4y³ (y''') + 3 (-x²-2y²) = 2x - 2x

    4y³ (y''') = 3 (x² + 2y²)

    y''' = 3 (x² + 2y²) / (4y³)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “The first derivative of x^2+2y^2=16 is - x / (2y), the second is - (2y^2+x^2) / (4y^3). Find the third implicit derivative of x^2+2y^2=16. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers