Ask Question
23 February, 21:57

Let z1 = a1 + b1i, z2 = a2 + b2i, and z3 = a3 + b3i. Prove the folowing using algebra or by showing with vectors.

a. z1 + z2 = z2 + z1

b. z1 + (z2 + z3) = (z1 + z2) + z3

+1
Answers (1)
  1. 23 February, 23:39
    0
    a) z1 + z2 = z2 + z1 ... proved.

    b) z1 + (z2 + z3) = (z1+z2) + z3 ... proved.

    Step-by-step explanation:

    It is given that there are three vectors z1 = a1 + ib1, z2 = a2 + ib2 and z3 = a3 + ib3. Now, we have to prove (a) z1 + z2 = z2 + z1 and (b) z1 + (z2 + z3) = (z1 + z2) + z3.

    (a) z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i (b1 + b2) {Adding the real and imaginary parts separately}

    Again, z2 + z1 = (a2 + ib2) + (a1 + ib1) = (a2 + a1) + i (b2 + b1) {Adding the real and imaginary parts separately}

    Hence, z1 + z2 = z2 + z1 {Since, (a1 + a2) = (a2 + a1) and (b1 + b2) = (b2 + b1) }

    (b) z1 + (z2 + z3) = [a1 + ib1] + [ (a2 + a3) + i (b2 + b3) ] = (a1 + a2 + a3) + i (b1 + b2+b3) {Adding the real and imaginary parts separately}

    Again, (z1+z2) + z3 = [ (a1+a2) + i (b1+b2) ]+[a3+ib3] = (a1 + a2 + a3) + i (b1 + b2+b3) {Adding the real and imaginary parts separately}

    Hence, z1 + (z2 + z3) = (z1+z2) + z3 proved.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Let z1 = a1 + b1i, z2 = a2 + b2i, and z3 = a3 + b3i. Prove the folowing using algebra or by showing with vectors. a. z1 + z2 = z2 + z1 b. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers