Ask Question
30 November, 11:34

The lengths of a rectangle have been measured to the nearest tenth of a centimetre they are 87.3cm and 51.8cm what is the upper bound for the area?

+4
Answers (1)
  1. 30 November, 12:25
    0
    Given:

    The lengths of the rectangle have been measured to the nearest tenth of a centimetre 87.3 and 51.8

    To find:

    the upper bound for the area of the rectangle

    Solution:

    From given, we have,

    The length of the rectangle = l = 87.3 cm

    The breadth of the rectangle = b = 51.8 cm

    Area of the rectangle = lb = 87.3 * 51.8 = 4522.14 cm²

    The upper bound for the area of the rectangle = 4522.14 + 100/2 = 4522.14 + 50 = 4572.14 cm²
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “The lengths of a rectangle have been measured to the nearest tenth of a centimetre they are 87.3cm and 51.8cm what is the upper bound for ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers