Ask Question
8 March, 21:02

How do you solve (5√2+3√5) (2√10-5)

+5
Answers (1)
  1. 8 March, 23:20
    0
    5 (sqrt (2) + sqrt (5))

    Step-by-step explanation:

    Simplify the following:

    (5 sqrt (2) + 3 sqrt (5)) (2 sqrt (10) - 5)

    Hint: | Multiply 5 sqrt (2) + 3 sqrt (5) and 2 sqrt (10) - 5 together using FOIL.

    (5 sqrt (2) + 3 sqrt (5)) (2 sqrt (10) - 5) = (5 sqrt (2)) (-5) + (5 sqrt (2)) (2 sqrt (10)) + (3 sqrt (5)) (-5) + (3 sqrt (5)) (2 sqrt (10)):

    -5*5 sqrt (2) + 5 sqrt (2) * 2 sqrt (10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply - 5 and 5 together.

    -5*5 = - 25:

    -25 sqrt (2) + 5 sqrt (2) * 2 sqrt (10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 5 and 2 together.

    5*2 = 10:

    -25 sqrt (2) + 10 sqrt (2) sqrt (10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | For a>=0, sqrt (a) sqrt (b) = sqrt (a b). Apply this to sqrt (2) sqrt (10).

    sqrt (2) sqrt (10) = sqrt (2*10):

    -25 sqrt (2) + 10 sqrt (2*10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 2 and 10 together.

    2*10 = 20:

    -25 sqrt (2) + 10 sqrt (20) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Simplify radicals.

    sqrt (20) = sqrt (2^2*5) = 2 sqrt (5):

    -25 sqrt (2) + 10*2 sqrt (5) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 10 and 2 together.

    10*2 = 20:

    -25 sqrt (2) + 20 sqrt (5) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply - 5 and 3 together.

    -5*3 = - 15:

    -25 sqrt (2) + 20 sqrt (5) + - 15 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 3 and 2 together.

    3*2 = 6:

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6 sqrt (5) sqrt (10)

    Hint: | For a>=0, sqrt (a) sqrt (b) = sqrt (a b). Apply this to sqrt (5) sqrt (10).

    sqrt (5) sqrt (10) = sqrt (5*10):

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6 sqrt (5*10)

    Hint: | Multiply 5 and 10 together.

    5*10 = 50:

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6 sqrt (50)

    Hint: | Simplify radicals.

    sqrt (50) = sqrt (2*5^2) = 5 sqrt (2):

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6*5 sqrt (2)

    Hint: | Multiply 6 and 5 together.

    6*5 = 30:

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 30 sqrt (2)

    Hint: | Add the numbers in - 25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 30 sqrt (2) together.

    Add like terms. - 25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 30 sqrt (2) = 5 sqrt (2) + 5 sqrt (5):

    5 sqrt (2) + 5 sqrt (5)

    Hint: | Factor common terms from 5 sqrt (2) + 5 sqrt (5).

    Factor 5 out of 5 sqrt (2) + 5 sqrt (5) giving 5 (sqrt (2) + sqrt (5)):

    Answer: 5 (sqrt (2) + sqrt (5))
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “How do you solve (5√2+3√5) (2√10-5) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers