Ask Question
15 May, 12:56

If the component of vector along the direction of vector is zero, what can you conclude about these two vectors?

+3
Answers (1)
  1. 15 May, 13:13
    0
    The vectors are perpendicular

    Step-by-step explanation:

    Assuming two non-null vectors A and B, if the component of vector A along the direction of vector B is zero, then it can be concluded that the vectors are perpendicular.

    For instance, let vector A be (x, 0). Any vector B of the form (0, y) is perpendicular to vector A. It is easy to note how the vectors are perpendicular in this example since their directions are along the x and y axis, but the property holds for any given pair of vectors.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “If the component of vector along the direction of vector is zero, what can you conclude about these two vectors? ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers