Ask Question
6 April, 11:14

What is the binomial expansion of (2x - 3) ^5?

A) (2x) ^ 5 - 15 (2x) ^ 4 + 90 (2x) ^ 3 - 270 (2x) ^ 2 + 405 (2x) - 243

B) (2x) ^ 5 + 15 (2x) ^ 4 - 90 (2x) ^ 3 + 270 (2x) ^ 2 - 405 (2x) + 243

C) (2x) ^ 5 + 15 (2x) ^ 4 + 90 (2x) ^ 3 + 270 (2x) ^ 2 + 405 (2x) + 243

D) 2 (x) ^ 5 - 30 (x) ^ 4 + 180 (x) ^ 3 - 540 (2x) ^ 2 + 810 (x) - 243

+2
Answers (2)
  1. 6 April, 12:25
    0
    the answer is C
  2. 6 April, 12:42
    0
    C

    Step-by-step explanation:

    (2x + 3) ^5 = C (5,0) 2x^5*3^0 +

    C (5,1) 2x^4*3^1 + C (5,2) 2x^3*3^2 + C (5,3) 2x^2*3^3 + C (5,4) 2x^1*3^4 + C (5,5) 2x^0*3^5

    Recall that

    C (n, r) = n! / (n-r) ! r!

    C (5,0) = 1

    C (5,1) = 5

    C (5,2) = 10

    C (5,3) = 10

    C (5,4) = 5

    C (5,5) = 1

    = 1 (2x^5) 1 + 5 (2x^4) 3 + 10 (2x^3) 3^2 + 10 (2x^2) 3^3 + 5 (2x^1) 3^4 + 1 (2x^0) 3^5

    = 2x^5 + 15 (2x^4) + 90 (2x^3) + 270 (2x^2) + 405 (2x) + 243

    = 32x^5 + 15 (16x^4) + 90 (8x^3) + 270 (4x^2) + 810x + 243

    = 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “What is the binomial expansion of (2x - 3) ^5? A) (2x) ^ 5 - 15 (2x) ^ 4 + 90 (2x) ^ 3 - 270 (2x) ^ 2 + 405 (2x) - 243 B) (2x) ^ 5 + 15 ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers