Ask Question
16 July, 02:57

The function h (t) = - 16t * 2 + 144 represents the height, h (t), in feet, of an object from the ground at t seconds after it is dropped. A realistic domain for this function is ...

1) - 3 <_ t <_ 3

2) 0 <_ t <_ 3

3) 0 <_ h (t) <_ 144

4) all real numbers

+1
Answers (1)
  1. 16 July, 03:39
    0
    The realistic domain of the function is 0 ≤ t ≤ 3 ⇒ answer (2)

    Step-by-step explanation:

    - The function h (t) = - 16t² + 144 represents the height, h (t), in feet, of an

    object from the ground at t seconds after it is dropped

    ∵ h (t) = - 16t² + 144

    ∵ At the beginning t = 0

    - Substitute the value of t in the function

    ∴ h (0) = - 16 (0) ² + 144

    ∴ h (0) = 144

    * The object was on a height 144 when t = 0

    * Lets find the time when the object reached the ground

    - When the object reached the ground its height = 0

    ∵ h (t) = - 16t² + 144

    ∵ h = 0

    - Substitute the value of h in the function

    ∴ 0 = - 16t² + 144

    - Add 16t² to both sides

    ∴ 16t² = 144

    - Divide both sides by 16

    ∴ t² = 9

    - Take √ for both sides

    ∴ t = 3 seconds

    * The object reached the ground after 3 seconds

    ∵ The domain of the function is the values of t

    ∴ The realistic domain of the function is 0 ≤ t ≤ 3
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “The function h (t) = - 16t * 2 + 144 represents the height, h (t), in feet, of an object from the ground at t seconds after it is dropped. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers