Ask Question
19 February, 09:37

Sin (a+b) * sin (a-b) = cos^2b-cos^2a

+5
Answers (1)
  1. 19 February, 12:51
    0
    Step-by-step explanation:

    To prove sin (a+b) * sin (a-b) = cos^2b-cos^2a

    we simplify the left side sin (a+b) * sin (a-b) first

    sin (a+b) = sin a cos b + cos a sin b

    sin (a-b) = sin a cos b - cos a sin b

    sin (a+b) * sin (a-b) = (sin a cos b + cos a sin b) x (sin a cos b - cos a sin b)

    sin a cos b ((sin a cos b + cos a sin b) - cos a sin b (sin a cos b + cos a sin b)

    open the bracket

    sin a cos b (sin a cos b) + sin a cos b (cos a sin b) - cos a sin b (sin a cos b) + cos a sin b (cos a sin b)

    sin²a cos²b + sin a cos b cos a sin b - cos a sin b sin a cos b + cos²a sin²b

    sin²a cos²b + 0 + cos²a sin²b

    sin²a cos²b + cos²a sin²b

    sin²a = 1-cos² a sin²b = 1-cos² b

    (1-cos² a) cos² b - cos² a (1-cos² b)

    = cos² b - cos² a cos² b - cos² a + cos² a cos² b

    choose like terms

    cos² b - cos² a - cos² a cos² b + cos² a cos² b = cos² b - cos² a + 0

    cos² b - cos² a

    left hand side equals right hand side
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Sin (a+b) * sin (a-b) = cos^2b-cos^2a ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers