Ask Question
24 November, 05:02

Use the angle difference identity to find the exact value of each. 3) cos 75 0 4) sin 105 0 5) Show sin 4θ = 4sin θ cos θ cos 2 θ 6) Solve 5 cos 2 θ = 1 for 0 o < θ < 360 o 7) Solve cos 2 θ = cos θ for 0 o < θ < 360 o. 8) Solve cos 2 θ = cos θ + 2 for 0 < θ < 2p

+5
Answers (1)
  1. 24 November, 06:34
    0
    3) cos 75 = (√6 - √4) / 4

    4) sin 105 = (√6 + √4) / 4

    5) below

    6) θ = 39.2° or 140.7°

    7) θ = 120° or 240°

    8) θ = 0.267π rad or π rad

    Step-by-step explanation:

    3) cos 75 = cos (30+45) = cos30. cos45 - sin30sin45=

    √3/2. √2/2 - 1/2. √2/2 = (√6 - √4) / 4

    4) sin 105 = sin (60+45) = sin60. cos45 + sin45. cos60 =

    √3/2. √2/2 + 1/2. √2/2 = (√6 + √4) / 4

    5) sin4θ = 4sinθcosθcos2θ

    sin4θ = sin (2θ+2θ) = sin2θcos2θ + sin2θcos2θ = 2sin2θcos2θ

    As sin2θ = sinθcosθ + sinθcosθ = 2sinθcosθ

    substituting:

    2.2sinθcosθ. cos2θ = 4sinθcosθcos2θ

    6) 5cos2θ = 1 0°<θ<360°

    cos2θ = 1/5

    As cos2θ = cosθcosθ - sinθsinθ = cos²θ - sin²θ

    and sin²θ + cos²θ = 1 → sin²θ = 1 - cos²θ

    we can say that cos2θ = cos²θ - (1 - cos²θ) = cos²θ - 1 + cos²θ = 2cos²θ - 1

    So, 2cos²θ - 1 = 1/5

    2cos²θ = 1/5 + 1

    2cos²θ = 6/5

    cos²θ = 6/10

    cos²θ = 3/5

    cosθ = ± √ (3/5)

    θ = + cos⁻¹√ (3/5) → θ = 39.2°

    θ = - cos⁻¹√ (3/5) → θ = 140.7°

    7) cos2θ = cosθ 0°<θ<360°

    From the item above, we know that cos2θ = 2cos²θ - 1

    2cos²θ - 1 = cosθ

    2cos²θ - cosθ - 1 = 0

    Making cosθ = y to facilitate:

    2y² - y - 1 = 0

    Δ = (-1) ² - 4.2. (-1) = 9

    √Δ = 3

    y = (1±3) / 4

    y₁ = 4/4 = 1

    y₂ = - 2/4 = - 1/2

    cosθ = y

    cosθ = 1 → θ = 0°

    cosθ = - 1/2 → θ = 120° or 240°

    As 0°<θ<360° (no equal sign) → θ = 120° or 240°

    8) cos2θ = cosθ + 2 for 0 < θ < 2p

    From the item above, we know that cos2θ = 2cos²θ - 1

    2cos²θ - 1 = cosθ + 2

    2cos²θ - cosθ - 3 = 0

    Making cosθ = y to facilitate:

    2y² - y - 3 = 0

    Δ = (-1) ² - 4.2. (-3) = 25

    √Δ = 5

    y = (1±5) / 4

    y₁ = 6/4 = 2/3

    y₂ = - 4/4 = - 1

    cosθ = y

    cosθ = 2/3 → θ = 48.2° = 0.267π rad

    cosθ = - 1 → θ = 180° = π rad
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Use the angle difference identity to find the exact value of each. 3) cos 75 0 4) sin 105 0 5) Show sin 4θ = 4sin θ cos θ cos 2 θ 6) Solve ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers