Ask Question
23 August, 12:49

Prove that

1 / cos (x) - cos (x) = sin (x) ∙ tan (x) for x ≠?2 + k, for all integers k.

+3
Answers (1)
  1. 23 August, 14:11
    0
    Answer: From the given expression we can get the fundamental trigonometry identity

    Step-by-step explanation:

    1 : cos (*) - cos (*) = sin (*) * tan (*) ⇒

    [1 : cos (*) ] - cos (*) = sin (*) * sin (*) / cos (*)

    1 / cos (*) - cos (*) = sin² (*) / cos (*) ⇒cos (*) / cos (*) - cos² (*) = sin² (*)

    1 - cos² (*) = sin² (*)

    1 = cos² (*) + sin² (*) fundamental trigonometry identity
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove that 1 / cos (x) - cos (x) = sin (x) ∙ tan (x) for x ≠?2 + k, for all integers k. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers