Ask Question
24 September, 16:14

A mixed doubles tennis game is to be played between two teams. There are four married couples. No team is to consist of a husband and his wife. What is the maximum number of games that can be played? A. 12

B. 21

C. 36

D. 42

E. 46

+1
Answers (1)
  1. 24 September, 18:16
    0
    42 games.

    Step-by-step explanation:

    To start you have to select 2 women who will be in opposite teams. In this case, the order of women does NOT matter, therefore combinations are used. Then the combination would be as follows:

    Select 2 women from 4 women in 4C2 (6 ways)

    Now, for each selection of 2 women, you have to determine the number of possible games that can be played.

    Assuming that the 4 couples are Ww, Xx, Yy and Zz (where the uppercase letter is the wife and the lowercase letter is the husband)

    So, let's say we choose W and X as the two women.

    Possible teams are:

    - Wx vs Xw

    - Wx vs Wy

    - Wx vs Xz

    - Wy vs Xw

    - Wy vs Xz

    - Wz vs Xw

    - Wz vs Xy

    So, when we choose W and X as the two women, there are 7 possible games to play.

    As there are 6 different ways to choose the 2 women, the total number of possible games = (6) * (7) = 42
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A mixed doubles tennis game is to be played between two teams. There are four married couples. No team is to consist of a husband and his ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers