Ask Question
27 July, 08:01

In order to solve the system of equations below, Harvey multiplies each equation by a constant to eliminate the x terms.

7 x + 3 y = 5. 2 x + 5 y = negative 11.

What are the resulting equations?

14 x + 6 y = 10. Negative 14 x minus 35 y = 77.

14 x + 6 y = 10. Negative 14 x + 35 y = 77.

14 x + 6 y = 10. Negative 14 x minus 35 y = negative 77.

Negative 14 x minus 6 y = 10. 14 x + 35 y = negative 77.

+5
Answers (1)
  1. 27 July, 08:10
    0
    The correct answer is A. 14 x + 6 y = 10. Negative 14 x minus 35 y = 77

    Step-by-step explanation:

    Let's find out the constants to eliminate the x terms

    7 x + 3 y = 5

    2 x + 5 y = negative 11

    Let's multiply the first equation by 2 and the second one by - 7, this way:

    2 * (7 x + 3 y = 5)

    -7 * (2 x + 5 y = negative 11)

    14x + 6y = 10

    -14x - 35y = 77

    The correct answer is A. 14 x + 6 y = 10. Negative 14 x minus 35 y = 77
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “In order to solve the system of equations below, Harvey multiplies each equation by a constant to eliminate the x terms. 7 x + 3 y = 5. 2 x ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers