Ask Question
22 March, 18:24

Write the quadratic equation whose coefficient with x^2 to 1 and roots are √3-1 divided by 2 and √3+1 divided by 2

+1
Answers (2)
  1. 22 March, 19:26
    0
    Now that we have both of these zero terms, we can multiply them to get a standard form.

    f (x) = (x - 6) (x + 4)

    And while this will give us the zeros we need, it will no give us the lead coefficient. So we must multiply by the desired lead coefficient.

    f (x) = 5 (x - 6) (x + 4)

    f (x) = 5 (x^2 - 6x + 4x - 24)

    f (x) = 5 (x^2 - 2x - 24)

    f (x) = 5x^2 - 10x - 120
  2. 22 March, 21:40
    0
    1x^2-sqrt (3) b+1/2=0 or

    2x^2 - 2sqrt (3) b+1=0

    Step-by-step explanation:

    ax^2 + bx+c=0

    a=1, b, c=?

    x1 = (sqrt (3) - 1) / 2

    x2 = (sqrt (3) + 1) / 2

    x1+x2=-b/a

    x1 * x2 = c/a

    x1 + x2=

    (sqrt (3) - 1) / 2 + (sqrt (3) + 1) / 2=

    2sqrt (3) / 2=

    sqrt (3) = -b/1

    b=-sqrt (3)

    x1*x2 =

    ((sqrt (3) - 1) / 2) * ((sqrt (3) + 1) / 2) =

    ((sqrt (3)) ^2 - 1^2) / 4=

    (3-1) / 4=

    2/4=

    1/2=c/1

    c=1/2

    ax^2 + bx+c=0

    1x^2-sqrt (3) b+1/2=0 / *2

    2x^2 - 2sqrt (3) b+1=0
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Write the quadratic equation whose coefficient with x^2 to 1 and roots are √3-1 divided by 2 and √3+1 divided by 2 ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers