Ask Question
26 June, 20:53

Which of the following relations is not a function?

{ (0, 0), (1, 0), (2, 0) }

{ (-1, 3), (4, 2), (-1, 5) }

{ (1, 2), (3, - 5), (-1, 7) }

{ (7, - 1), (3, - 2), (5, - 2) }

+5
Answers (1)
  1. 26 June, 21:10
    0
    The formal definition of a function states that: "A function relates each element of a set with exactly one element of another set (possibly the same set)."

    The part that says " ... with exactly one element ... " means that for every input (x-coordinate), it cannot return 2 or more values (y-coordinate). In other words, among the relations stated, we just have to look for the relation with repeating x-coordinates to find the relation that is not a function.

    { (0, 0), (1, 0), (2, 0) } has no repeating x-coordinates so it is a function.

    { (1, 2), (3, - 5), (-1, 7) } has no repeating x-coordinates so it is a function.

    { (7, - 1), (3, - 2), (5, - 2) } has no repeating x-coordinates so it is a function.

    { (-1, 3), (4, 2), (-1, 5) } has 2 pairs of "-1" x-coordinates so it is NOT a function.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Which of the following relations is not a function? { (0, 0), (1, 0), (2, 0) } { (-1, 3), (4, 2), (-1, 5) } { (1, 2), (3, - 5), (-1, 7) } { ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers