Ask Question
16 January, 14:02

Find

y' and y''.

y = eαx sin βx

+5
Answers (1)
  1. 16 January, 16:51
    0
    Given: y = e^ (αx) sin (βx)

    To find the first derivative, simply use the Product and Chain Rules: y' = e^ (αx) cos (βx) (β) + sin (βx) (αe^ (αx)) y' = αe^ (αx) sin (βx) + βe^ (αx) cos (βx)

    You could factor out the e^ (αx) if you wanted. It will make it easier when taking the second derivative. y' = e^ (αx) [αsin (βx) + βcos (βx) ]

    To find the second derivative, simple take the derivative of y'. This one involves multiple Chain rules and multiple Product rules. y'' = e^ (αx) [[ (α) (cos (βx) (β) + sin (βx) (0) ] + [ (β) (-sin (βx) (β) + cos (βx) (0) ]] + [αsin (βx) + βcos (βx) ] (αe^ (αx))

    That's a lot. Simplify: y'' = e^ (αx) [[αβcos (βx) ] + [-β²sin (βx) ]] + [αsin (βx) + βcos (βx) ] (αe^ (αx))

    Distribute: y'' = αβe^ (αx) cos (βx) - β²e^ (αx) sin (βx) + α²e^ (αx) sin (βx) + αβe^ (αx) cos (βx)

    And finally, add like-terms and order: y'' = α²e^ (αx) sin (βx) - β²e^ (αx) sin (βx) + 2αβe^ (αx) cos (βx)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Find y' and y''. y = eαx sin βx ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers