Ask Question
23 July, 21:48

What is the derivative of

y = (tanx) / (1+secx)

+1
Answers (1)
  1. 24 July, 01:44
    0
    First, the the derivative of y=lnA is y' = A' / A

    let y = (tanx) / (1+secx), implies ln y=ln [ (tanx) / (1+secx) ]

    (lny) ' = (ln [ (tanx) / (1+secx) ]) ' so y' / y = [ (tanx) / (1+secx) ]) ' / (tanx) / (1+secx)

    (tanx) / (1+secx) ' = [ (tanx) ' (1+secx) - (tanx) (1+secx) '] / (1+secx) ²

    (tanx) ' = 1 + tan²x and (1+secx) '] = secx tanx (check lesson)

    so

    (tanx) / (1+secx) ' = (1 + tan²x) (1+secx) - (tan²xsecx) / (1+secx) ²

    = (1 + secx + tan²x) / (1+secx) ²

    y' / y = [ (tanx) / (1+secx) ]) ' / (tanx) / (1+secx) =

    y' / y = [ (1 + secx + tan²x) / (1+secx) ² ] / (tanx) / (1+secx)

    y' / y = (1 + secx + tan²x) (1+secx) / (tanx) (1+secx) ²

    so y' = y. [ (1 + secx + tan²x) (1+secx) / (tanx) (1+secx) ² ]

    but y = (tanx) / (1+secx),

    y' = (tanx) / (1+secx) [ (1 + secx + tan²x) (1+secx) / (tanx) (1+secx) ² ]

    finally the derivative of (tanx) / (1+secx) is given by

    y' = (1 + secx + tan²x)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “What is the derivative of y = (tanx) / (1+secx) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers