Ask Question
26 September, 01:54

How to integrate sec^3x

+2
Answers (1)
  1. 26 September, 05:42
    0
    1 Use Integration by Parts on / int / sec^{3}x /, dx∫sec

    3

    xdx.

    Let u=/sec{x}u=secx, dv=/sec^{2}xdv=sec

    2

    x, du=/sec{x}/tan{x} /, dxdu=secxtanxdx, v=/tan{x}v=tanx

    2 Substitute the above into uv-/int v /, duuv-∫vdu.

    /sec{x}/tan{x}-/int / tan^{2}x/sec{x} /, dxsecxtanx-∫tan

    2

    xsecxdx

    3 Use Pythagorean Identities: / tan^{2}x=/sec^{2}x-1tan

    2

    x=sec

    2

    x-1.

    /sec{x}/tan{x}-/int (/sec^{2}x-1) / sec{x} /, dxsecxtanx-∫ (sec

    2

    x-1) secxdx

    4 Expand (/sec^{2}x-1) / sec{x} (sec

    2

    x-1) secx.

    /sec{x}/tan{x}-/int / sec^{3}x-/sec{x} /, dxsecxtanx-∫sec

    3

    x-secxdx

    5 Use Sum Rule: / int f (x) + g (x) /, dx=/int f (x) /, dx+/int g (x) /, dx∫f (x) + g (x) dx=∫f (x) dx+∫g (x) dx.

    /sec{x}/tan{x}-/int / sec^{3}x /, dx+/int / sec{x} /, dxsecxtanx-∫sec

    3

    xdx+∫secxdx

    6 Set it as equal to the original integral / int / sec^{3}x /, dx∫sec

    3

    xdx.

    /int / sec^{3}x /, dx=/sec{x}/tan{x}-/int / sec^{3}x /, dx+/int / sec{x} /, dx∫sec

    3

    xdx=secxtanx-∫sec

    3

    xdx+∫secxdx

    7 Add / int / sec^{3}x /, dx∫sec

    3

    xdx to both sides.

    /int / sec^{3}x /, dx+/int / sec^{3}x /, dx=/sec{x}/tan{x}+/int / sec{x} /, dx∫sec

    3

    xdx+∫sec

    3

    xdx=secxtanx+∫secxdx

    8 Simplify / int / sec^{3}x /, dx+/int / sec^{3}x /, dx∫sec

    3

    xdx+∫sec

    3

    xdx to 2/int / sec^{3}x /, dx2∫sec

    3

    xdx.

    2/int / sec^{3}x /, dx=/sec{x}/tan{x}+/int / sec{x} /, dx2∫sec

    3

    xdx=secxtanx+∫secxdx

    9 Divide both sides by 22.

    /int / sec^{3}x /, dx=/frac{/sec{x}/tan{x}+/int / sec{x} /, dx}{2}∫sec

    3

    xdx=

    2



    secxtanx+∫secxdx



    10 Original integral solved.

    /frac{/sec{x}/tan{x}+/int / sec{x} /, dx}{2}

    2



    secxtanx+∫secxdx



    11 Use Trigonometric Integration: the integral of / sec{x}secx is / ln{ (/sec{x}+/tan{x}) }ln (secx+tanx).

    /frac{/sec{x}/tan{x}+/ln{ (/sec{x}+/tan{x}) }}{2}

    2



    secxtanx+ln (secx+tanx)



    12 Add constant.

    /frac{/sec{x}/tan{x}+/ln{ (/sec{x}+/tan{x}) }}{2}+C

    2



    secxtanx+ln (secx+tanx)

    + C
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “How to integrate sec^3x ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers