Ask Question
23 March, 22:26

Using the digits 0, 1, 2, ... 8, 9, determine how many 6 -digit numbers can be constructed according to the following criteria.

The number must be odd and greater than 600,000 ; digits may be repeated.

The number of 6 -digit numbers that can be constructed is ...

+1
Answers (1)
  1. 24 March, 01:38
    0
    200,000 6-digit numbers can be constructed.

    Explanation:

    Since the number is greater than 600,000, the first digit must be 6, 7, 8, or 9, so 4 different options: 4

    The second, third, fourth, and fith digits can be either number 0 through 9, so 10 options for each one: 10 * 10 * 10 * 10.

    Since the number must be odd and greater than 600,00, the last digit is odd, so it can be 1, 3, 5, 7, or 9, so 5 different options: 5.

    Using the multiplication counting principle, you muliply the independent options to obtain the number of different combinations:

    4 * 10 * 10 * 10 * 10 * 5 = 200,000.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Using the digits 0, 1, 2, ... 8, 9, determine how many 6 -digit numbers can be constructed according to the following criteria. The number ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers