Ask Question
26 October, 23:57

A researcher conducts a repeated-measures study comparing two treatment conditions with a sample of n = 25 participants and obtains a t-statistic of t = 2.21. Which of the following is the correct decision for a two-tailed test?

A. Reject the null hypothesis with? =.05 but fail to reject with? =.01.

B. Reject the null hypothesis with either? =.05 or? =.01.

C. Fail to reject the null hypothesis with either? =.05 or? =.01.

D. cannot determine the correct decision without more information

+2
Answers (1)
  1. 27 October, 02:59
    0
    Answer: A

    Step-by-step explanation:

    Since the number of samples, n is 25, we would determine the degree of freedom, df

    df = n - 1 = 25 - 1

    df = 24

    Given the test statistic = 2.21 and the test is a two-tailed test, we would determine the probability value using the t test calculator.

    At significant level of 0.05,

    P value = 0.037

    At significant level of 0.01,

    p value = 0.037

    The decision rule is that:

    We would reject the null hypothesis if significant level is > p value

    Therefore,

    A. Reject the null hypothesis with alpha = 0.05 but fail to reject with alpha = 0.01
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A researcher conducts a repeated-measures study comparing two treatment conditions with a sample of n = 25 participants and obtains a ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers