Ask Question
22 April, 16:14

Lim x-->0 ((sqrt (ax+b) - 2) / x) = 1 show steps ...

+2
Answers (1)
  1. 22 April, 20:01
    0
    Lim x→0 (√ (ax+b) - 2) / x=1

    You want to know the value of "a" and "b"

    lim x→0 (√ (ax+b) - 2) / x = (√ (0+b) - 2) / 0 = (√b - 2) / 0;

    Then if (√b - 2) / 0=1; the numerator must be "0"

    (√b-2) = 0

    √b=2

    (√b) ²=2²

    b=4

    It is necessary the numerator must be "0", if the denominator is "0" and the result is equal a number.

    Therefore:

    lim (√ (ax+4) - 2) / x=1

    x⇒0

    I imagine you know Taylor Series.

    √ (ax+4) = (4 (1+ax/4)) ¹/²=2 (1+ax/4) ¹/²

    Remember:

    (1/2)

    (1+x) ᵃ = Σ (a) x^a

    In our case:

    (1/2) (1/2) (1/2)

    (1+ax/4) ¹/² = (0) (ax/4) ⁰ + (1) (ax/4) ¹ + (2) (ax/4) ² + ...

    =1 + (1/2) ax/4 + - 1/8 (ax/4) ² + ...

    =1+ax/8-a²x²/128 + ...

    Therefore:

    lim (√ (ax+4) - 2) / x=lim [2 (1+ax/8-a²x²/128 + ...) - 2]/x=

    x⇒0 x⇒0

    lim [ (2+ax/4-a²x²/64 + ...) - 2]/x=

    x⇒0

    lim (ax/4-a²x²/64 + ...) / x=

    x⇒0

    lim x (a/4-a²x/64 + ...) / x=

    x⇒0

    lim (a/4-a²x/64 + ...) = (a/4-0-0-0 - ...) = 4/a

    x⇒0

    Because:

    lim (√ (ax+4) - 2) / x=1

    x⇒0

    Then:

    4/a=1 ⇒ a=4

    Answer: a=4; b=4
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Lim x-->0 ((sqrt (ax+b) - 2) / x) = 1 show steps ... ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers