Ask Question
29 July, 17:55

What is the largest integer $n$ such that $7^n$ divides $1000!$?

+4
Answers (1)
  1. 29 July, 19:43
    0
    The correct answer is

    n = 3038

    Step-by-step explanation:

    Where we have;

    We note that 1000! = An even number

    Since Even * Even = even

    Even * Odd = Even

    Also, 7ⁿ is an Odd number since odd * odd = odd

    Therefore 7ⁿ will divide 1000! with some fractions as follows;

    1000! divided by 7ⁿ

    When 7ⁿ = 1000!

    log (7ⁿ) = log (1000!) = log (4.02*10²⁵⁶⁷)

    n·log (7) = 2567.604

    n = 2567.604 / (log (7)) = 3038.23

    Therefore, the largest integer n such that 7ⁿ divides 1000! = 3038

    Which gives, 1000! : 7³⁰³⁸ = 1.5733.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “What is the largest integer $n$ such that $7^n$ divides $1000!$? ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers