Ask Question
29 July, 12:39

Dos motos, A y B, toman la salida en una carrera de 90 km. La moto A realiza el recorrido con una velocidad media inferior en 20 km/h a la de la moto B, con lo que llega a la meta 3 minutos después que B. Calcula la velocidad de cada moto.

+4
Answers (1)
  1. 29 July, 13:58
    0
    motorcycle A: 180 km/h

    motorcycle B: 200 km/h

    Step-by-step explanation:

    To solve this question we need to write a system of equations for A and B, using the equation:

    distance = speed * time

    The speed of A is 20 less than the speed of B, so:

    speedA = speedB - 20

    And the time A traveled is 3 minutes (0.05 hours) more than B's time, so:

    timeA = timeB + 0.05

    Then, using the distance equation, we have that:

    distanceB = speedB * timeB

    90 = speedB * timeB

    distanceA = speedA * timeA

    90 = (speedB - 20) * (timeB + 0.05)

    90 = speedB * timeB + 0.05 * speedB - 20*timeB - 1

    90 = 90 + 0.05 * speedB - 20*timeB - 1

    20*timeB = 0.05 * speedB - 1

    timeB = (speedB - 20) / 400

    using this timeB in the distance equation, we have:

    90 = speedB * (speedB - 20) / 400

    90 * 400 = speedB^2 - 20*speedB

    speedB^2 - 20*speedB - 36000 = 0

    Solving this quadratic equation, we have speedB = 200 km/h

    And the speedA is:

    speedA = speedB - 20 = 200 - 20 = 180 km/h
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Dos motos, A y B, toman la salida en una carrera de 90 km. La moto A realiza el recorrido con una velocidad media inferior en 20 km/h a la ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers