Ask Question
7 April, 16:11

Find the area under the standard normal probability distribution between the following pairs of z-scores. a. z=0 and z=3.00 e. z=-3.00 and z=0 b. z=0 and z=1.00 f. z=-1.00 and z=0 c. z=0 and z=2.00 g. z=negative 1.19 and z=0 d. z=0 and z=0.61 h. z=-0.61 and z=0

+4
Answers (1)
  1. 7 April, 17:34
    0
    a) 0.49865

    b) 0.34134

    c) 0.47725

    d) 0.22907

    e) 0.49865

    f) 0.34134

    g) 0.38298

    h) 0.22907

    Step-by-step explanation:

    * Lets explain how to solve the problem

    a) P (0 < z < 3)

    - From the normal distribution table of z

    ∵ P (0 < z < 3) = 0.99865 - 0.50000 = 0.49865

    ∴ P (0 < z < 3) = 0.49865

    b) P (0 < z < 1)

    - From the normal distribution table of z

    ∵ P (0 < z < 1) = 0.84134 - 0.50000 = 0.34134

    ∴ P (0 < z < 1) = 0.34134

    c) P (0 < z < 2)

    - From the normal distribution table of z

    ∵ P (0 < z < 2) = 0.97725 - 0.50000 = 0.47725

    ∴ P (0 < z < 2) = 0.47725

    d) P (0 < z < 0.61)

    - From the normal distribution table of z

    ∵ P (0 < z < 0.61) = 0.72907 - 0.50000 = 0.22907

    ∴ P (0 < z < 0.61) = 0.22907

    e) P (-3 < z < 0)

    - From the normal distribution table of z

    ∵ P (-3 < z < 0) = 0.50000 - 0.00135 = 0.49865

    ∴ P (-3 < z < 0) = 0.49865

    f) P (-1 < z < 0)

    - From the normal distribution table of z

    ∵ P (-1 < z < 0) = 0.50000 - 0.15866 = 0.34134

    ∴ P (-1 < z < 0) = 0.34134

    g) P (-1.19 < z < 0)

    - From the normal distribution table of z

    ∵ P (-1.19 < z < 0) = 0.50000 - 0.11702 = 0.38298

    ∴ P (-1.19 < z < 0) = 0.38298

    h) P (-0.61 < z < 0)

    - From the normal distribution table of z

    ∵ P (-0.61 < z < 0) = 0.50000 - 0.27093 = 0.22907

    ∴ P (-0.61 < z < 0) = 0.22907
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Find the area under the standard normal probability distribution between the following pairs of z-scores. a. z=0 and z=3.00 e. z=-3.00 and ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers