Ask Question
Today, 21:03

Consider circle C with radius 5 cm and a central angle measure of 60°. What fraction of the whole circle is arc RS?

What is the approximate circumference of the circle?

cm

What is the approximate length of arc RS?

cm

+2
Answers (1)
  1. Today, 22:12
    0
    There are a total of 360° in any given circle, so an arc swept out by 60° of that 360° would make up 60/360 = 1/6 of the circle's circumference.

    The formal for the circumference of a circle comes out of the definition of one of the most famous constants in mathematics: π. π is defined as the ratio between a circle's circumference and its diameter, or:

    From this definition, we can multiply both sides of the equation by d to obtain

    or, circumference is π times the diameter. To find the diameter, we just need to double the radius, giving us 5 * 2 = 10cm. Usually you'll see π approximated as 3.14, which is likely what they want you to use here. Using that approximation, we find the circumference to be 3.14 * 10 = 31.4 cm.

    Finally, to get the length of that arc, we just need to take 1/6 of the circumference (since the arc sweeps out 1/6 of the circle), giving us 31.4 * 1/6 ≈ 5.2 cm.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Consider circle C with radius 5 cm and a central angle measure of 60°. What fraction of the whole circle is arc RS? What is the approximate ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers