Ask Question
4 May, 07:10

Show that sinA - cosA + 1 / sinA + cosA - 1 = secA + tanA

+1
Answers (1)
  1. 4 May, 07:54
    0
    sinA - cosA + 1 / sinA + cosA - 1 = secA + tanA

    Now secA = 1/cosA and tanA = sinA/cosA

    So sinA - cosA + 1 / sinA + cosA - 1 = 1/cosA + sinA / cosA

    From now on I'll write sinA = s and cosA = c : -

    (s - c + 1) / (s + c - 1) = 1/c + s/c

    (s - c + 1) / (s + c - 1) = (1 + s) / c

    Cross multiply:-

    s + c - 1 + s^2 + sc - s = sc - c^2 + c

    s^2 + c + sc - 1 = sc - c^2 + c

    s^2 - 1 + sc - sc + c - c = - c^2

    s^2 - 1 = - c^2

    - (1 - s^2) = - c^2

    Now 1 - s^2 = c^2 so:-

    - c^2 = - c^2

    So the identity is proved
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Show that sinA - cosA + 1 / sinA + cosA - 1 = secA + tanA ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers