Ask Question
20 February, 11:19

A building has a ramp to its front doors to accommodate the handicapped. If the distance from the building to the end of the ramp is 17 feet and the height from the ground to the front doors is 7 feet, how long is the ramp? (Round to the nearest tenth.)

+1
Answers (1)
  1. 20 February, 13:44
    0
    One suggestion is to start by drawing a diagram. I find it easier to work with what I can visualize.

    Now, you might be familiar with the term hypotenuse, and probably Pythagorean theorem, which can be used to find any side of a right triangle if given the two other sides.

    In this case we are given the length of two sides of a right triangle. The height of the ramp, 7 feet, and the distance of the base of the ramp, 17 feet.

    Pythagorean theorem is generally written as a² + b² = c², where c = hypotenuse. To find hypotenuse we must get it by itself. It is being squared in this form. So to get c by itself (or to isolate c) we must use the opposite operator of c (²) (squaring) which is square rooting (√). What we do to one side we must do to both so now our equation looks like √ (a² + b²) = c.

    a and b are the base and height. It doesn't matter which you plug in for a or b due to commutative property.

    I would suggest using a calculator. If you are not comfortable with using parenthesis with your calculator either plug it in just like the way I typed it or do the squaring and addition first then square root the sum of the two sides after they have been squared.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A building has a ramp to its front doors to accommodate the handicapped. If the distance from the building to the end of the ramp is 17 ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers