Ask Question
9 December, 08:47

Compute the value of the following expressions: 323 mod 5 323 div 5 - 323 mod 5 - 323 div 5 327 mod 3 (64 · (-67) + 201) mod 7 (〖38〗^12) mod 6 (〖38〗^12) mod 3

+5
Answers (1)
  1. 9 December, 10:05
    0
    323 mod 5 = 3

    -323 mod 5 = - 3

    327 mod 3 = 0

    (64 * (-67) + 201) mod 7 = 6

    (38^12) mod 6 = 4

    (38^12) mod 3 = 1

    Step-by-step explanation:

    The modulo operation looks for remainders from the quotients. In order to find them, divide the whole number by the mod number. Then take just the decimal after the whole answer and multiply it by the mod number.

    323 mod 5

    323/5 = 64.6

    .6 * 5 = 3

    -323 mod 5

    323/5 = - 64.6

    -.6 * 5 = - 3

    327 mod 3

    327/5 = 109

    0 * 3 = 0

    (64 * (-67) + 201) mod 7

    64 * - 67 = - 4288 + 201 = 4087

    4087/7 = 583.85714

    .85714 * 7 = 6

    (38^12) mod 6

    38^12 = 9.07x10^18

    9.07x10^18/6 = 1510956318082499242.6666667

    .666667 * 6 = 4

    (38^12) mod 3

    38^12 = 9.07x10^18

    9.07x10^18/3 = 3021912636164998485.333333

    .3333333 * 3 = 1
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Compute the value of the following expressions: 323 mod 5 323 div 5 - 323 mod 5 - 323 div 5 327 mod 3 (64 · (-67) + 201) mod 7 (〖38〗^12) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers