Ask Question
17 July, 09:11

1. Derive this identity from the sum and difference formulas for cosine:

sin a sin b = (1 / 2) [cos (a - b) - cos (a + b) ]

Calculation:

1.

2.

3.

Reason:

1.

2.

3.

2. Use the trigonometric subtraction formula for sine to verify this identity:

sin ((π / 2) - x) = cos x

Calculation:

1.

2.

3.

Reason:

1.

2.

3.

+2
Answers (2)
  1. 17 July, 09:20
    0
    1. sin a sin b = (1 / 2) [cos (a - b) - cos (a + b) ]

    Calculation:

    Taking L. H. S. of above equation

    (1 / 2) [cos (a - b) - cos (a + b) ]

    = (1 / 2) [ (cos a cos b + sin a sin b) - (cos a cos b - sin a sin b) ]

    {∵ cos (a - b) = cos a cos b + sin a sin b & cos (a + b) = cos a cos b - sin a sin b}

    = (1 / 2) [ cos a cos b + sin a sin b - cos a cos b + sin a sin b]

    = (1 / 2) [2 sin a sin b]

    = sin a sin b

    2. sin ((π / 2) - x) = cos x

    Calculation:

    sin ((π / 2) - x) = sin (π / 2) cos x - cos (π / 2) sin x

    {∵sin (a - b) = sin a cos b - cos b sin a

    & sin (π / 2) = 1 & cos (π / 2) = 0}

    = 1 * cos x - 0 * sin x

    = cos x
  2. 17 July, 11:59
    0
    See below.

    Step-by-step explanation:

    1. (1 / 2) [cos (a - b) - cos (a + b) ]

    = 1/2 (cosa cosb + sina sinb - (cosa cosb - sina sinb)

    = 1/2 (cosa cosb - cosa cos b + sina sinb + sina sinb)

    = 1/2 (2 sina sinb)

    = sina sinb.

    (I used the 2 identities cos (a - b) = cosa cosb + sina sinb) and

    cos (a + b) = cosa cosb - sina sinb.)

    2. sin (π/2 - x) = sin (π/2) cos x - cos (π/2) sin x

    = 1 * cos x - 0 * sinx

    = cosx - 0

    = cos x.

    (I used the identity sin (a - b) = sina cosb - cosa sinb

    and the fact that sin (π/2) = 1 and cos (π/2) = 0.)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “1. Derive this identity from the sum and difference formulas for cosine: sin a sin b = (1 / 2) [cos (a - b) - cos (a + b) ] Calculation: 1. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers