Ask Question
26 August, 02:16

Use sum identities to derive one double angle identity for cosine

Hint: cos 2 Ф = cos (Ф+Ф)

Ф=theta

+1
Answers (1)
  1. 26 August, 03:21
    0
    cos (2 Ф) = cos² (Ф) - sin² (Ф) cos (2 Ф) = 1 - 2sin² (Ф) cos (2 Ф) = 2cos² (Ф) - 1

    Step-by-step explanation:

    The angle sum formula for cosine is ...

    cos (α+β) = cos (α) cos (β) - sin (α) sin (β)

    When we have α = β = Ф, this becomes ...

    cos (Ф+Ф) = cos (Ф) cos (Ф) - sin (Ф) sin (Ф)

    cos (2 Ф) = cos² (Ф) - sin² (Ф)

    The "Pythagorean identity" can be used to write this in terms of sine or cosine.

    cos (2 Ф) = (1 - sin² (Ф)) - sin² (Ф)

    cos (2 Ф) = 1 - 2sin² (Ф)

    or

    cos (2 Ф) = cos² (Ф) - (1 - cos² (Ф))

    cos (2 Ф) = 2cos² (Ф) - 1
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Use sum identities to derive one double angle identity for cosine Hint: cos 2 Ф = cos (Ф+Ф) Ф=theta ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers